Hugging Face Released Moonshine Web: A Browser-Based Real-Time, Privacy-Focused Speech Recognition Running Locally

Hugging Face Released Moonshine Web: A Browser-Based Real-Time, Privacy-Focused Speech Recognition Running Locally


The advent of automatic speech recognition (ASR) technologies has changed the way individuals interact with digital devices. Despite their capabilities, these systems often demand significant computational power and resources. This makes them inaccessible to users with constrained devices or limited access to cloud-based solutions. This disparity underscores an urgent need for innovations that deliver high-quality ASR without heavy reliance on computational resources or external infrastructures. This challenge has become even more pronounced in real-time processing scenarios where speed and accuracy are paramount. Existing ASR tools often falter when expected to function seamlessly on low-power devices or within environments with limited internet connectivity. Addressing these gaps necessitates solutions that provide open-source access to state-of-the-art machine learning models.

Moonshine Web, developed by Hugging Face, is a robust response to these challenges. As a lightweight yet powerful ASR solution, Moonshine Web stands out for its ability to run entirely within a web browser, leveraging React, Vite, and the cutting-edge Transformers.js library. This innovation ensures that users can directly experience fast and accurate ASR on their devices without depending on high-performance hardware or cloud services. The center of Moonshine Web lies in the Moonshine Base model, a highly optimized speech-to-text system designed for efficiency and performance. This model achieves remarkable results by utilizing WebGPU acceleration for superior computational speeds while offering WASM as a fallback for devices lacking WebGPU support. Such adaptability makes Moonshine Web accessible to a broader audience, including those using resource-constrained devices.

Moonshine Web’s user-friendly design extends to its deployment process. Hugging Face ensures developers and enthusiasts can quickly set up the application by providing an open-source repository. Below are the steps and code required for deployment:

1. Clone the Repository

Phemex

git clone https://github.com/huggingface/transformers.js-examples.git

2. Navigate to the Project Directory

cd transformers.js-examples/moonshine-web

3. Install Dependencies

npm i

4. Run the Development Server  

npm run dev

The application should now be running locally. Open your browser and go to ‘http://localhost:5173’ to see it in action.

In conclusion, the development of Moonshine Web also highlights the importance of community engagement in advancing technological solutions. Incorporating an audio visualizer, adapted from an open-source tutorial by Wael Yasmina, exemplifies the collaborative ethos driving this project. Such contributions enhance the application’s functionality and inspire further innovations within the open-source ecosystem. Bridging the gap between resource-intensive models and user-friendly deployment paves the way for more inclusive and equitable access to cutting-edge technologies.

Check out the Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

Aswin AK is a consulting intern at MarkTechPost. He is pursuing his Dual Degree at the Indian Institute of Technology, Kharagpur. He is passionate about data science and machine learning, bringing a strong academic background and hands-on experience in solving real-life cross-domain challenges.

🧵🧵 [Download] Evaluation of Large Language Model Vulnerabilities Report (Promoted)



Source link

[wp-stealth-ads rows="2" mobile-rows="3"]

Leave a Reply

Your email address will not be published. Required fields are marked *

Pin It on Pinterest

#GlobalNewsIt
Paxful
#GlobalNewsIt
Hugging Face Released Moonshine Web: A Browser-Based Real-Time, Privacy-Focused Speech Recognition Running Locally
Phemex
Paxful
A Coding Implementation on Introduction to Weight Quantization: Key Aspect in Enhancing Efficiency in Deep Learning and LLMs
Bigger isn't always better: Examining the business case for multi-million token LLMs
Flags at the World Bank illustrating an article with viewpoints from Boston Consulting Group, or BCG, on how generative AI is reshaping global competition and geopolitics, presenting challenges and opportunities for nations and businesses alike.
Allen Institute for AI (Ai2) Launches OLMoTrace: Real-Time Tracing of LLM Outputs Back to Training Data
DeepCoder delivers top coding performance in efficient 14B open model
Photo of a gavel as OpenAI launches a legal counteroffensive against one of its co-founders, Elon Musk, and his competing AI venture, xAI.
bitcoin
ethereum
bnb
xrp
cardano
solana
dogecoin
polkadot
shiba-inu
dai
Bitcoin price tags $86K as Trump tariff relief boosts breakout odds
A Coding Implementation on Introduction to Weight Quantization: Key Aspect in Enhancing Efficiency in Deep Learning and LLMs
Bitcoin Whales Haven't Made Their Exit Yet – Is the Bull Cycle Still Intact?
4 Cryptos That Could Hit New All-Time Highs in July 2024
NFT trader sells CryptoPunk after a year for nearly $10M loss
Bitcoin price tags $86K as Trump tariff relief boosts breakout odds
A Coding Implementation on Introduction to Weight Quantization: Key Aspect in Enhancing Efficiency in Deep Learning and LLMs
Bitcoin Whales Haven't Made Their Exit Yet – Is the Bull Cycle Still Intact?
4 Cryptos That Could Hit New All-Time Highs in July 2024
bitcoin
ethereum
tether
xrp
bnb
solana
usd-coin
dogecoin
tron
cardano
bitcoin
ethereum
tether
xrp
bnb
solana
usd-coin
dogecoin
tron
cardano